A Proof of Moll’s Minimum Conjecture

نویسندگان

  • William Y. C. Chen
  • Ernest X. W. Xia
چکیده

Abstract. Let di(m) denote the coefficients of the Boros-Moll polynomials. Moll’s minimum conjecture states that the sequence {i(i+1)(d2i (m)−di−1(m)di+1(m))}1≤i≤m attains its minimum with i = m. This conjecture is a stronger than the log-concavity conjecture proved by Kausers and Paule. We give a proof of Moll’s conjecture by utilizing the spiral property of the sequence {di(m)}0≤i≤m, and the log-concavity of the sequence {i!di(m)}0≤i≤m.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of Moll's minimum conjecture

Let di(m) denote the coefficients of the Boros-Moll polynomials. Moll’s minimum conjecture states that the sequence {i(i+1)(di (m)−di−1(m)di+1(m))}1≤i≤m attains its minimum at i = m with 2−2mm(m + 1) ( 2m m )2 . This conjecture is stronger than the log-concavity conjecture proved by Kauers and Paule. We give a proof of Moll’s conjecture by utilizing the spiral property of the sequence {di(m)}0≤...

متن کامل

A Short Proof of Moll's Minimal Conjecture

We give a short proof of Moll’s minimal conjecture, which has been confirmed by Chen and Xia.

متن کامل

A Computer Proof of Moll’s Log-Concavity Conjecture

In his study [7] on quartic integrals, Moll met a specialized family of Jacobi polynomials. Moll conjectured that the corresponding coefficient sequences are log-concave. In this paper we settle Moll’s conjecture by a non-trivial usage of computer algebra.

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

A short proof of the maximum conjecture in CR dimension one

In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009